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ABSTRACT

Complex terrain poses challenges to the ground-based radar quantitative precipitation estimation (QPE)

because of partial or total blockages of radar beams in the lower tilts. Reflectivities from higher tilts are often

used in the QPE under these circumstances and biases are then introduced due to vertical variations of

reflectivity. The spaceborne Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission

(TRMM) satellite can provide good measurements of the vertical structure of reflectivity even in complex

terrain, but the poor temporal resolution of TRMM PR data limits their usefulness in real-time QPE. This

study proposes a novel vertical profile of reflectivity (VPR) correction approach to enhance ground radar–

based QPEs in complex terrain by integrating the spaceborne radar observations. In the current study, cli-

matological relationships between VPRs from an S-band Doppler weather radar located on the east coast of

Taiwan and the TRMMPR are developed using an artificial neural network (ANN). When a lower tilt of the

ground radar is blocked, higher-tilt reflectivity data are corrected with the trained ANN and then applied in

the rainfall estimation. The proposed algorithmwas evaluatedwith three typhoon precipitation events, and its

preliminary performance was evaluated and analyzed.

1. Introduction

In the ground radar quantitative precipitation esti-

mation (QPE), data from the lowest tilt are preferred

since they usually incur minimal errors because of

1) changes of radar variables with height and 2) hori-

zontal drifts of hydrometeors as they fall from the

height of the radar resolution volume to the ground

(Zrni�c and Ryzhkov 1996). The radar-based QPE in

Taiwan suffers from severe beam blockages due to the

complex terrain of the Central Mountain Range

(CMR), which peaks at nearly 4000m above mean sea

level (MSL; Fig. 1). When a radar beam in the lowest tilt

is completely blocked, higher-tilt data are usually used

in the QPE. However, when hydrometeors descend

from the radar observation height to the ground, vari-

ous microphysics processes (e.g., melting, aggregation,

breakup, collision, coalescence, and evaporation) could

cause reflectivity variations with height. The non-

uniform vertical structure of reflectivity often results

in a bias in the radar-based QPE (e.g., Andrieu and

Creutin 1995; Marzano et al. 2004) when compared with

surface gauge observations.
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To mitigate the ground radar QPE bias associated

with the nonuniform reflectivity structure, many vertical

profile of reflectivity (VPR) correction approaches have

been developed. A VPR correction extrapolates high-

altitude radar data to a lower reference height based

on a priori reference VPR (e.g., Andrieu and Creutin

1995; Fabry and Zawadzki 1995; Rico-Ramirez et al.

2005, 2007; Zhang et al. 2008; Zhang and Qi 2010; Qi et

al. 2013). For any VPR correction method, determining

a representative reference VPR is the first and most im-

portant step. Reference VPRs could be derived from

physical models or from radar observations in a nearby

area or a similar climatology region where the radar is not

blocked. The reference VPR is usually averaged over a

certain spatial and temporal domain (e.g., Joss and

Waldvogel 1970; Harrold and Kitchingam 1975; Willis

andHeymsfield 1989; Kitchen 1997; Smyth and Illingworth

1998; Zhang et al. 2008; Zhang and Qi 2010). For the

Hua-Lian radar (RCHL) located on the east coast of

Taiwan (Fig. 1), the terrain rises sharply from 0 to

2500mMSLwithin 15 km and causes severe blockages

(100% to all tilts below the 2.48 elevation angle) in the

western half of the radar umbrella. While data from

the eastern half of the radar umbrella could be used to

calculate VPRs that extend down to lower altitudes

near the ground, they are from the ocean region and

may be significantly different from those over the steep

terrain where orographic precipitation enhancements

are often present.

The Tropical Rainfall Measuring Mission (TRMM)

is a satellite-based program that provided global-range

tropical rainfall estimation since it was launched in

November 1997. As the world’s foremost satellite de-

signed for precipitation measurement, TRMM is under

the joint operation by the National Aeronautics and

Space Administration (NASA) and the Japan Aero-

space Exploration Agency (JAXA). Compared to

ground-based weather radars, TRMM’s Ku-band Pre-

cipitation Radar (PR) has two major advantages:

1) TRMM PR can provide reflectivity data with a fine

vertical resolution of 250m, while the beamwidth of

S-band radars such asRCHLcould reach a few kilometers

at far range, and 2) compared to a ground-based radar,

TRMM PR can provide better observations on the verti-

cal structure of reflectivity, especially in complex terrain

regions, where a lower-tilt ground-based radar beam is

totally blocked. On the other hand, ground-based radar

observations have a very high temporal resolution of ap-

proximately 5–10min while the number of TRMM over-

passes is only about one every other day. The poor

temporal resolution significantly limits the use of TRMM

PR in real-time precipitation estimation.

In the current study, a new radar VPR correction

approach with TRMM PR observations was developed.

Reflectivity fields observed by RCHL and TRMM PR

from the same time and location are collected and re-

lationships between VPRs of the two sensors are de-

veloped through an artificial neural network (ANN).

The trained ANN is then used to retrieve lower-altitude

radar reflectivities from the unblocked higher-tilt data in

areas of severe beam blockages and the retrieved

reflectivity is applied in the rain-rate estimation. The

proposed approach was evaluated for three typhoon

events with surface gauge observations.

This paper is organized as follows. Section 2 describes

the data and its processing. The ANN VPR correction

scheme is introduced in section 3 and its performance is

evaluated in section 4. A summary is provided in

section 5.

2. Data sources and processing

a. The impact of complex terrain on radar reflectivity

AGematronik 1500S Doppler radar (RCHL) located

at 23.998N, 121.628E (Fig. 1) is the main data source for

the real-time radar QPE and flood warnings in the east

coastal area of Taiwan. The key system characteristics of

FIG. 1. The terrainmap of Taiwan, where color shows the heights

of the CMR. The location of an S-band radar (RCHL) used in the

current work is indicated by a black square, and the location of

each gauge is indicated by a white dot. The reflectivity–rain rate

relations are derived using the observations from four impact-type

JWDs, and their locations are indicated by green stars. The gauges

used in the performance evaluation are marked as red dots.
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RCHL are listed in Table 1. Since RCHL is within 20km

of the steep slopes on the east side of the CMR, the two

lowest tilts (0.58 and 1.48) are completely blocked

(Figs. 2a,b) to the west of the radar. There are even some

small blockages at the 9.98 elevation angle (Fig. 2e). To

the east of the radar is the Pacific Ocean, and all tilts are

unblocked. To the west of the radar, heights of the

lowest unblocked beams (Fig. 3) quickly change from

0.2 to 4.0 km on the east side of the CMR and shoot

above 5 km beyond the ridge of CMR. While other ra-

dars in Taiwan provide better coverage on the west side

of CMR, RCHL is the main radar for the east coastal

areas, even though the lower-level coverage is very

limited.

Figure 4 shows example reflectivity fields from Ty-

phoon Tembin at 0945 UTC 23 August 2012, where the

typhoon eye can be identified at approximately 22.58N,

122.758E. The lowest two tilts (0.58 and 1.48) did not

provide any data over the island of Taiwan because of

the severe blockage. The 4.38 (Fig. 4c) and 6.08 (Fig. 4d)
tilts provide small coverage over the east coast of Tai-

wan, although the reflectivities were apparently weaker

than those in the lower tilts. For instance, the mean re-

flectivities within the black dashed circles from these

four tilts are 29, 27, 19, and 13dBZ, respectively. If re-

flectivities from the 4.38 or 6.08 elevation angles are used

for the rain-rate estimation without any vertical cor-

rection, significant underestimation may be introduced.

To obtain reliable QPEs in complex terrain, various

approaches using gauge data have been developed. Such

approaches include the real-time local gauge bias cor-

rection of radar QPE (e.g., Germann and Joss 2002;

Goudenhoofdt and Delobbe 2009) and gauge and oro-

graphic precipitation climatology combined QPE

(Schaake et al. 2004; Daly et al. 1994). In addition, the

quality of a gauge-basedQPE is highly dependent on the

density of the gauge network. The density of the gauge

network along the east coast of Taiwan is apparently

lower than in the west plains region (Fig. 1), and such

gauge density would not be able to capture the highly

variable orographic rain in this complex terrain.

Therefore, a radar-based QPE is still needed.

b. The reflectivity field observed by TRMM

The TRMMPR operates at Ku band with a frequency

of 13.8GHz (Kozu et al. 2001; Kummerow et al. 2000)

and scans across a 215-km-wide swath with vertical and

horizontal resolutions at nadir of 250m and 4.3 km, re-

spectively. There are three levels of radar algorithms

developed for TRMM PR products: the basic radar pa-

rameters such as return power and radar reflectivity Z

(from the level I algorithm), products associated with

radar signal processing and physical process of storms

(from the level II algorithm), and space–time averaging

and statistics products of level I and II (from the level III

algorithm; Cao et al. 2013a). The datasets used in this

example were generated by the level II algorithm of the

PR profile algorithm (2A25), which provides range

profiles of attenuation-corrected and ground-clutter-

filtered radar reflectivity and the corresponding rain-

fall estimation (Meneghini et al. 2000, 2004; Iguchi et al.

2000, 2009). Wen et al. (2013) applied a physically based

VPR model proposed by Kirstetter et al. (2010) to cor-

rect the vertical variations in radar reflectivity. How-

ever, model errors attributed to the assumption of icing

andmelting processes, as well as the shape of VPR, have

not be fully studied (Cao et al. 2013b).

While TRMM PR provides good reflectivity obser-

vations, the data cannot be directly utilized in real-time

QPE because of the low frequency for any given loca-

tion, especially for the Taiwan area. For example, during

the 5-day period between 8 and 12 August 2009 (Ty-

phoon Morakot), TRMM only passed through the Tai-

wan region five times, as shown in Fig. 5. Among them,

only the swath at 2042UTC 8August 2009 coveredmost

parts of Taiwan while others covered small parts of

the island.

3. VPR correction with an ANN approach

Artificial neural network has been applied in weather

radar applications for purposes of precipitation fore-

casting, rain-rate estimation, damaging wind prediction,

cloud classification, radar data quality control, etc. (e.g.,

Bankert and Aha 1996; Marzban and Stumpf 1998; Hall

et al. 1999; Orlandini and Morlini 2000; Lakshmanan

et al. 2007; Roebber et al. 2007). Different from physi-

cally based approaches where a priori knowledge or

assumptions are needed, ANN does not require a priori

physical rules and handles complex problems that are

not well understood with statistical constraints. An

TABLE 1. Technical specifications of the Gematronik 1500S

Doppler radar (RCHL) used in the current work.

Specifications

Pulse peak power 750 kW

Frequency range 2.7–2.9GHz

Pulse length 0.53ms

Range resolution 0.25 km

Beamwidth 18
Antenna diameter 8.6m

PRF 250–1300Hz

Lat 23.9908N
Lon 121.62008E
Radar height 63m

Elev angle 0.58, 1.48, 2.48, 3.48, 4.38,
6.08, 9.98, 14.68, 19.58
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FIG. 2. Radar beam blockage percentages from elevation angles of (a) 0.58, (b) 1.48, (c) 2.48, (d) 3.48, and (e) 9.98. The gray
map indicates the blockage percentage.
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ANN-based VPR correction approach was developed

by Marzano et al. (2004) for a C-band meteorological

radar located in central Italy, in which a reference VPR

was obtained by training an ANN with volumetric data

collected from close range (within 60km), where both

the near-surface and high-altitude reflectivities are

available. The ANN-based VPR correction was applied

to radar data at far ranges and produced improved rain-

rate estimation (Marzano et al. 2004) over the data

without the correction. This approach cannot be applied

to RCHL over the western half of the radar domain

because of a lack of lower-tilt data for ANN training.

The ANN approach was tested using data from the east

side of the radar, but the derived VPRs did not provide

significant improvements for the radar QPE to the west

because the VPR characteristics were different over the

ocean (east of the radar) than over the land. Detailed

discussions of VPRs sampled from land and ocean re-

gions are provided in section 4. It should be noted that

the precipitation could be estimated with ANN ap-

proaches using gauge observations (e.g., Hall et al. 1999;

Hung et al. 2009; Luk et al. 2001), but the current work

focuses on the radar-based QPE and will not discuss

ANN approaches from gauge observations.

A new ANN approach was developed in the current

study, where the ANNwas trained using the combination

of TRMM PR data and radar data instead of the radar

data only. The new ANN VPR correction algorithm

utilizes a feed-forward ANN as shown in Fig. 6, which

includes a linear least squares simplex algorithm to search

for the optimal input–output relations in the training

process (Hsu et al. 1995). The ANN consists of two layers

of neural nodes, which are connected by a weighting

summation and extra adjusting factors. The nodes (20

nodes) in the hidden layer combine the input values using

an operation of weighting summation as shown in Eq. (1),

where X is the input vector, WW,N is the trained matrix,

and b1 is the adjusting factor. The number of input vari-

ables and nodes are denoted with W and N. The outputs

are calculated with a logistic sigmoid activation function,

as shown in Eq. (2), where a5W1
W,NX1 b1:

OH 5 f (W1
W,NX1b1) (1)

where

f (a)5
1

11 exp(2a)
. (2)

Similarly, the output layer calculates the final output of x1
and x2 using the outputs of the hidden layer and a trained

matrixW2
W,N and adjusting factor b2 using Eqs. (1) and (2).

The input variables of the ANN are the normalized

radar reflectivities from three adjacent higher tilts, and

the outputs are the normalized radar reflectivities at the

two lowest tilts. The reference height of normalization is

5 km MSL, which is the approximate height of the

melting layer bottom. Generally, the ground level is

selected as the reference height in the VPR normaliza-

tion (e.g., Andrieu and Creutin 1995); however, the

ground level is varied in the mountain region and the

maximum difference could reach 3000m. Therefore,

the height of the melting layer bottom is selected as the

reference height, which is relatively more stable than the

ground level.

The weighting matrices (W1
W,N and W2

W,N) and the

adjusting factors (b1 and b2) implemented in ANN are

obtained through a training procedure using the

Levenberg–Marquardt (LM) algorithm. Different from

the approach proposed by Marzano et al. (2004) where

only ground radar data from different heights are used

as the training dataset, both the reflectivities from

RCHL and TRMM PR are used in the training in this

study. Before being applied in the training process, the

reflectivity fields from RCHL and TRMM PR were

processed with the following steps:

1) Applying a quality-control process on the TRMM

PR data. The level II algorithm of the PR profile

FIG. 3. The distance between the center of the lowest unblocked

beams and the ground surface.
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algorithm (2A25) is first applied on the TRMM PR

data, and the reflectivity data are corrected from

attenuation and ground-clutter filtering. To further

minimize the possible effects from the remaining

ground clutter, the first three gates (750m) of the

filtered TRMM PR reflectivity are eliminated. The

first valid data used in the ANN training are the

fourth gate.

2) Converting the RCHL reflectivity field from polar

into Cartesian coordinates with the horizontal reso-

lution of 1 km.

3) Converting the horizontal resolution of the RCHL

from 1 to 4.3 km through a simple average method.

Therefore, the horizontal resolution of RCHL and

TRMM PR are matched to each other.

4) Grouping the vertical reflectivities of RCHL and

TRMM PR from the same locations (latitude and

longitude) as training pairs.

5) Separating all the available training pairs into strat-

iform and convective types. Since the VPRs from

different precipitations could be significantly dis-

tinct, using separate ANNs trained from stratiform

and convective precipitation types could potentially

enhance the VPR correction results.

The approaches developed by Zhang et al. (2008) and

Xu et al. (2008) were used in the precipitation type

segregation. In the approach proposed by Zhang et al.

(2008), a radar bin column is identified as convective if a

reflectivity at any height in the column is greater than

FIG. 4. The reflectivity fields observed by RCHL at 0945UTC 23Aug 2012. Themean reflectivities within the black

circle at (a) 0.58, (b) 1.48, (c) 4.38, and (d) 6.08 are 29, 27, 19, and 13 dBZ, respectively.
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50 dBZ, or a reflectivity is greater than 30dBZ at2108C
or above. Otherwise, this radar bin column is identified

as stratiform precipitation. A VPR is classified as trop-

ical convective type if the reflectivities monotonically

increase or remain constant with the decrease of height

(Xu et al. 2008). In this work, the types of convective and

tropical convective are merged as convective pre-

cipitation, and approximately 70% of the VPRs belong

to the convective type for the precipitation events used

in the validation. Therefore, two ANNs are obtained for

FIG. 5. The reflectivity fields observed by TRMM PR from Typhoon Morakot on 8–12 August 2009.
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stratiform and convective precipitations, respectively. It

should be noted that the radar beam would broaden at

far range, which will cause the smoothing effect on the

VPR. Although no model-based approach (e.g., Zhang

and Qi 2010) was applied to correct the smoothing

effect in the VPR derivation, the smoothing effect was

considered through limiting the maximum range (80km)

of the ANN approach. Given this relative close range,

the impact on the ANNVPR correction is not significant

(Marzano et al. 2004).

Examples of training data are demonstrated in Fig. 7,

where VPRs from stratiform and convective pre-

cipitations are shown in Figs. 7a and 7b, respectively.

Reflectivities from RCHL at h3–h5 (black lines) and

from TRMMPR (gray lines) from the same location are

utilized as one pair of the training data. The severe

blockage causes the missing radar reflectivities (x1 and

x2) at the two lowest heights (e.g., h1 and h2) for a given

azimuth and range. Reflectivities (x3–x5) from three

higher heights (e.g., h3–h5) at the same azimuth and

range are used as the inputs to the ANN. The output of

the ANN is the normalized reflectivity x1 (x2) at height

h1 (h2). It should be noted that values of x3–x5 are nor-

malized to the reflectivity at a reference height (5 km

MSL), and the reflectivity at 5 km could be obtained

through linear interpolation with x3–x5. Given the ob-

served higher-tilt reflectivities x3–x5 (at h3–h5), the ini-

tial guesses of x1 (at h1) and x2 (at h2) are calculated

using initial weighting matrices and adjusting factors.

The differences « between x1 (x2) and the TRMM PR

reflectivities at h1 (h2) are then calculated. The initial

weighting matrices and the adjusting factors are then

modified in a way that can decrease «. The training

procedure is considered complete when « reaches a

FIG. 6. Flowchart of the developed two layers of ANN for the VPR retrieval, where X3–X5

are the radar reflectivities from three higher tilts and X1 and X2 are the reconstructed radar

reflectivities from the lowest two tilts. The weight matrix WN,M and the adjusting factor b are

trained using the data from TRMM PR and RCHL.

FIG. 7. The normalized VPR observed by RCHL (black lines) and TRMM PR (gray lines), where X3–X5 are the RCHL observations

from three higher continued elevation angles andX1 andX2 are the retrieved reflectivities from two lowest elevation angles. The vertical

reflectivity observed from (a) stratiform and (b) convective precipitations are shown.
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minimum value. It should be noted that the maximum

height of RCHL and TRMM PR data is 8 km MSL as

shown in Fig. 7.

4. Performance evaluation

The new ANN-based VPR correction approach was

evaluated using three 24-h typhoon events of Morakot

(0000–2400 UTC 8 August 2009), Nanmadol (0000–

2400 UTC 28 August 2011), and Tembin (0000–

2400 UTC 22 August 2012). During these three typhoon

events, TRMM PR passed over the Taiwan region at

2042 UTC 8 August 2009 (Morakot), 0751 UTC 28 Au-

gust 2011 (Nanmadol), and 0942 UTC 23 August 2012

(Tembin). Tracks of the three typhoons are presented in

Fig. 8. All three typhoons moved from the east to the

west side of Taiwan, except that the centers of Morakot

and Tembin hit northern Taiwan while the center of

Nanmadol hit southern Taiwan. Only typhoon events are

utilized in the performance evaluation because of two

major reasons. The first is that a typhoon is one of the

worst threats to the Taiwan region. On average, 3.3 ty-

phoons hit Taiwan each year, causing damages exceeding

$520 000000 with extreme heavy rainfalls and strong

winds (Lai and Wu 2010). Obtaining accurate QPEs for

flood monitoring and prediction, landslide forecasts, and

water resourcemanagement during typhoon events is the

most important mission of the Central Weather Bureau.

The second reason is that it was shown that the variation

in the VPR from typhoon (tropical) precipitation is sig-

nificant (Xu et al. 2008), and the correction on the re-

flectivity field from typhoon precipitation is necessary to

achieve accurate QPE. It is a good option to start this

work with the typhoon precipitation. Although a total of

27 typhoon events impacted the Taiwan region during

2001–12, both the radar and TRMM PR data are avail-

able only from these three typhoon events from the

Taiwan region. For the other 24 events, the TRMM PR

did not scan the Taiwan region (or there are no overlaps

between scans from RCHL and TRMM PR) during the

time period of the typhoon, and therefore they were not

used in the current work. One assumption of the neural

network approach is the representativeness of the lim-

ited training data, which could be used to catch the sig-

natures of the testing data. We assume that within the

relatively short period, such as 24h, the variations in the

vertical structure of reflectivity are not significant.

Therefore, the two ANNs (stratiform and convective),

trained for each typhoon event using the available one

volume data, could be used to correct radar reflectivity

during the 24h period.

Four experiments (EXP I–IV; shown in Table 2) were

carried out to evaluate the new VPR correction ap-

proach. In EXP I, the radar-based rain rate is directly

estimated using the higher-tilt reflectivity when the

lower-tilt data are blocked by the CMR. In EXP II, the

higher-tilt reflectivity is corrected using the normalized

VPR derived from RCHL (denoted as VPR-RCHL)

based on the observations to the east of RCHL. In EXP

III and IV, the higher-tilt reflectivity is corrected using

the VPR derived from the TRMM PR data. EXP III

uses the mean VPR-TRMM, and EXP IV uses the VPR

calculated from the new developed ANN approach, re-

spectively. In all VPR approaches (EXP II–IV), the ob-

served higher-tilt reflectivity is corrected as

ZCor 5ZObsVPR(H2)

VPR(H1)
, (3)

whereZObs is the observed reflectivity at heightH1;Z
Cor

is the corrected reflectivity; and VPR(H2) and VPR(H1)

are the normalized VPRs at heightsH2 (the height from

higher tilt, that is, the height ofZObs) andH1 (the terrain

height), respectively. Two reflectivity–rain rate (Z–R)

relationships are utilized in the rain-rate estimation, one

for convective (Z5 88R1.64) and one for stratiform (Z5
131R1.72) precipitation. These two relationships were

derived using the drop size distribution (DSD) data

collected by four impact-type Joss–Waldvogel dis-

drometers (JWD; as indicated in Fig. 1). The measure-

ment range of JWD is between 0.359 and 5.373mm with

20 bins, and temporal resolution is 1min. A total of

7920min of DSD data were used in the Z–R relation-

ships derivation.

In the evaluation, the rain rate (updated every 5min)

was first estimated with the Z–R relationship according

to the precipitation classification result, and then the

FIG. 8. Typhoon tracks of Morakot (2009), Nanmadol (2011), and

Tembin (2012).
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24-h precipitation accumulation was calculated. QPE

results from these four experiments were compared

with surface rain gauge measurements. The gauge

network (shown in Fig. 1) consists of a total of 494

surface stations, and automatic rainfall and meteoro-

logical telemetry system stations. The original goal of

the gauge network is to provide effective real-time

rainfall and hourly meteorological observation data

(Chen et al. 1999). A detailed description of the gauge

network can be found in the publication produced by

Central Weather Bureau (Central Weather Bureau

1995). Among these 494 gauges, 43 of them (marked

as red dots) were used in this work for the performance

evaluation. Three scores were used to assess the per-

formance of each experiment: 1) the mean ratio

[MR;where MR5 (Rp)/(Gp)]; 2) the root-mean-square

error fRMSE; where RMSE 5 [(Rp 2Gp)
2]1/2g; and

3) the correlation coefficient (CC; where CC 5
f[Rp 2 (Rp)][Gp 2 (Gp)]g/sRsG), where Rp (Gp) is the

24-h radar (gauge) accumulated rainfall for each pair

p and sR (sG) is the standard deviation of all the radar

(gauge) pairs.

TABLE 2. Comparison results of MR, RMSE, and CC obtained in EXP I–IV. For EXP II–IV, the improvement percentages according to

EXP I are also included.

EXP I no VPR

correction

EXP II VPR-RCHL

correction

EXP III VPR-TRMM

(mean) correction

EXP IV VPR-TRMM

(ANN) correction

Typhoon Morakot

MR 0.60 0.63 (3%) 0.74 (14%) 1.06 (34%)

RMSE (mm) 61 58 (5%) 47 (23%) 43 (30%)

CC 20.32 20.30 (0%) 0.13 (13%) 0.30 (30%)

Typhoon Nanmadol

MR 0.33 0.39 (6%) 0.48 (15%) 0.60 (27%)

RMSE (mm) 187 175 (6%) 155 (17%) 116 (38%)

CC 0.26 0.29 (3%) 0.37 (11%) 0.63 (37%)

Typhoon Tembin

MR 0.58 0.67 (9%) 1.12 (30%) 1.03 (39%)

RMSE (mm) 64 60 (6%) 56 (12%) 50 (22%)

CC 0.21 0.32 (11%) 0.63 (42%) 0.67 (46%)

Total

MR 0.43 0.48 (5%) 0.59 (16%) 0.78 (35%)

RMSE (mm) 123 116 (5%) 107 (13%) 84 (32%)

CC 0.33 0.37 (4%) 0.45 (11%) 0.60 (27%)

FIG. 9. (a) ThemeanVPR sampled byRCHL (VPR-RCHL) andTRMMPRusing the data from theCMR (VPR-TRMMCMR) or ocean

(VPR-TRMMOcean) regions are plotted using red, blue, and green thick lines, respectively. The std dev at each height is included as a thin

bar. The mean VPR-RCHL was derived using a volume scan of reflectivity at 0758 UTC 28 Aug 2011, and the mean VPR-TRMM was

derived using the TRMM PR data at 0751 UTC 28 Aug 2011. (b) A map showing the radar data used in the VPR-RCHL derivation (red

lines) and the TRMM PR data used in the VPR-TRMMCMR and VPR-TRMMOcean derivation (blue and green lines, respectively). The

TRMM PR swath is also shown (black dashed lines).

OCTOBER 2015 WANG ET AL . 2239

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:00 PM UTC



a. Case I

Typhoon Nanmadol is of primary interest because

of its significant precipitation on the east coast and

the obvious vertical structure in the reflectivity field.

Nanmadol was formed on 21 August 2011 and made its

landfall over the Taiwan region on 28August. Along the

east coast, the maximum 24-h accumulation measured

by the gauges is approximately 374mm. The TRMMPR

passed over Taiwan at 0751 UTC 28 August 2011 and

provided data for the neural network training. There

are a total of 204 pairs of RCHL and TRMMPR vertical

reflectivity columns (with 4.3-km resolution) used in the

ANN training.

To demonstrate the VPR correction performances, a

comparison of the normalized VPRs derived from

RCHL (VPR-RCHL) andTRMMPR (VPR-TRMM) is

depicted in Fig. 9a. In this example, the means and

standard deviations of VPR-RCHL derived using the

approach proposed by Zhang et al. (2008) are presented

in Fig. 9a with red lines. In this approach, a volume scan

of reflectivity data (at 0758 UTC 28 August 2011) first

goes through a neural network–based quality-control

procedure (Lakshmanan et al. 2007) to remove ground

clutter. The quality-controlled reflectivity data from all

tilts are interpolated onto evenly spaced vertical heights

that are 200m apart according to the central height of

the reflectivity bins. Only those data within the annular

region (red in Fig. 9b) of the 20–80-km range, which are

free of terrain blockages, are selected in the VPR deri-

vation. As shown in Fig. 9a, the mean reflectivities at

each level are normalized with respect to the values at a

reference height (5 km MSL in this work). Two mean

VPRs were derived using TRMM PR data at 0751 UTC

28 August 2011 from different regions: the CMR de-

noted as VPR-TRMMCMR (thick blue line) and the

ocean denoted as VPR-TRMMOcean (thick green line).

The data used in VPR-TRMMCMR (VPR-TRMMOcean)

derivation are from the blue (green) region shown in

Fig. 9b. The means and standard deviations calculated

using all of the available TRMM PR data within each

250-m height layer are presented with thick and thin

lines, respectively. Because the TRMM PR is operated

at Ku band with a frequency of 13.8GHz (2.17-cm

FIG. 10. Spatial distribution of the radar QPE vs gauge observations (a) without VPR correction, (b) with VPR

correction where the VPRs are derived using meanVPR-RCHL, (c) using meanVPR-TRMM, and (d) using VPR-

TRMM reconstructed from ANN. The 24-h accumulated precipitation from Typhoon Nanmadol (0000–

2400 UTC 28 Aug 2011) is used in this experiment. The size of the circles represents gauge-observed accumulated

amount, and the color of the circles indicates the bias (QPE/Gauge).
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wavelength), the attenuation correction is necessary

for the TRMM PR observations when they are used in

the VPR derivation. In this example, VPR-RCHL,

VPR-TRMMCMR, and VPR-TRMMOcean showed sim-

ilar trends above 5 km, especially between 5 and 7km

(Fig. 9a). The mean reflectivities from these three VPRs

decrease with increasing heights. However, apparent

disparities can be observed below 5km MSL, where

VPR-TRMMCMR shows larger values than VPR-RCHL

at any given height. The differences between VPR-

RCHL and VPR-TRMMOcean are relatively smaller.

For example, the normalized mean VPR-TRMMCMR

increases from 1.0 (5km) to 1.78 (1km), but the normal-

ized mean VPR-RCHL increases from 1 (5km) to 1.05

(1km). The difference between these two normalized

VPRs is more than 50%, which will result in significantly

different correction results when they are applied in the

VPR correction. On the other hand, the normalized

meanVPR-TRMMOcean almost remains the same from 1

to 5km. The variations of VPR-RCHL and VPR-

TRMMOcean between 1 and 5km are very similar. Two

factors could potentially cause the differences between

VPR-RCHL andVPR-TRMMCMR. First, the radar data

used in the VPR-RCHL derivation were mainly from

the ocean area (red in Fig. 9b) but VPR-TRMMCMR

data were from the land (blue in Fig. 9b). Different at-

mospheric environments (over land and ocean) could

cause different microphysical processes at the lower al-

titudes and result in different VPRs near the surface.

Second, most of the data used in the VPR-TRMMCMR

FIG. 11. Scatterplots of the radar QPE vs gauge observations for Typhoon Nanmadol (0000–2400 UTC 28 Aug

2011). The reflectivity fields used in the rain-rate estimation are (a) without VPR correction, (b) with VPR

correction where the VPRs are derived using mean VPR-RCHL, (c) using mean VPR-TRMM, and (d) using

VPR-TRMM reconstructed from ANN. The evaluation results in terms of mean bias, CC, and RMSE are also

included.
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derivation were from the mountainous region. The large

increase of reflectivity with decreasing height in VPR-

TRMMCMR is most likely an indication of significant

orographic enhancement of precipitation. A similar

phenomenon was also observed in the mountain regions

of the western United States (Zhang et al. 2012).

Moreover, the lower sensitivity of TRMM PR to low

reflectivity may also cause the large VPR. Since both

VPR-RCHL and VPR-TRMMOcean are obtained from

the data sampled from the ocean region, differences

betweenVPR-RCHLandVPR-TRMMOcean are smaller

than differences between VPR-RCHL and VPR-

TRMMCMR at each height layer.

Figure 10 shows the bias ratios of the four radar QPEs

versus gauge observations on the 24-h scale. The bubble

size indicates the amount of the 24-h gauge observation,

and the bubble color indicates the ratio between the

radar QPE and the gauge observation. Warm (from

orange to red), cool (from blue to purple), and white

colors represent the radar QPE overestimation, un-

derestimation, and matching with gauge, respectively.

Corresponding scatterplots are also presented in Fig. 11,

where the scores of MR, CC, and RMSE are included

as a reference.

In EXP I (Fig. 10a), significant underestimation could

be observed along the east coast of Taiwan. The maxi-

mum difference between the gauge measurement and

QPE is 356mm, and the means of gauge measurement

and QPE are 225 and 63mm. The MR, RMSE, and CC

of EXP I in this case are 0.33, 187mm, and 0.26, re-

spectively. Because of the severe beam blockage, re-

flectivity data from a tilt under 2.48 are not available, as

shown in Fig. 3, and only data from 2.48 and above could

be applied in rain-rate estimation. The nonuniform

vertical structure in the reflectivity field, which causes

the low correlation between the higher-tilt reflectivity

and the ground precipitation intensity, is the major

cause of the underestimation. Relatively low reflectivity

data from a higher tilt could be found in the VPR ex-

ample in Fig. 9, and the underestimation results when

the low reflectivity is applied in the rain-rate estimation.

In EXP II, although the higher-tilt reflectivity is

FIG. 12. Spatial distribution of the radar QPE vs gauge observations (a) without VPR correction, (b) with VPR

correction where the VPRs are derived using meanVPR-RCHL, (c) using meanVPR-TRMM, and (d) using VPR-

TRMM reconstructed from ANN. The 24-h accumulated precipitation from Typhoon Morakot (0000–2400 UTC

8 Aug 2009) is used in this experiment. The size of the circles represents gauge-observed accumulated amount, and

the color of the circles indicates the bias (QPE/Gauge).
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corrected using the VPR derived from radar observa-

tions to the east of RCHL, the underestimation had

limited improvement over EXP I with the MR, RMSE,

and CC of 0.39, 175mm, and 0.29, respectively. As

demonstrated in Fig. 9, the normalized VPR from a

lower altitude (e.g., 1 km MSL) is approximately the

same as the value from a higher altitude (e.g., 4 km

MSL). This is because the VPR-RCHL derived from the

ocean area cannot catch the vertical structure of the

precipitation over the steep mountain area west of

RCHL. On the other hand, apparent improvements

could be obtained after the higher-tilt reflectivity is

corrected using the VPR derived using the mean VPR-

TRMM as shown in Fig. 10c. The MR and CC are in-

creased to 0.48 and 0.37, and the RMSE drops to

155mm. The improvements come from the VPR-

TRMM, which better captured the vertical structure of

reflectivity in the mountainous region west of RCHL

during typhoons (Fig. 9a), especially the orographic

precipitation enhancements near the surface. However,

because of the large variance observed from the VPR-

TRMM as shown in Fig. 9a, biased correction results if

the mean VPR-TRMM is directly used in the VPR

correction. On the other hand, the trained ANN can

build the correlation between the ‘‘local’’ observed

TRMM and radar VPRs, and the uncertainty from the

mean VPR-TRMM is therefore decreased. Using the

trained ANN, the most likely low-tilt radar reflectivity

can be estimated given the higher-tilt observations. The

obtained MR, RMSE, and CC are 0.60, 116mm, and

FIG. 13. Scatterplots of the radar QPE vs gauge observations for Typhoon Morakot (0000–2400 UTC 8 Aug

2009). The reflectivity fields used in the rain-rate estimation are (a) without VPR correction, (b) with VPR cor-

rection where the VPRs are derived using mean VPR-RCHL, (c) using mean VPR-TRMM, and (d) using VPR-

TRMM reconstructed from ANN. The evaluation results in terms of mean bias, CC, and RMSE are also included.
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0.63, respectively. Compared to EXP I, EXPs II–IV

improve MR (6%, 15%, and 27%), RMSE (6%, 17%,

and 38%), and CC (3%, 11%, and 37%).

b. Cases II and III

The deadliest typhoon in the recorded history of

Taiwan, Typhoon Morakot formed on 2 August 2009

and dissipated on 12 August 2009. Morakot landed on

Taiwan at midnight (local time) on 8 August and brought

a maximum accumulated precipitation of 2600mm dur-

ing 4 days (Wang et al. 2013). In EXP I (Fig. 12a),

underestimation, indicated by red bubbles, could be

observed along the east coast of Taiwan. Themaximum

difference between the gaugemeasurement andQPE is

148.5mm, and the means of gauge measurement and

QPE are 62.39 and 38.57mm, respectively. The MR,

RMSE, and CC of EXP I in this case are 0.60, 61mm,

and 20.32, respectively. A negative correlation co-

efficient indicated that the radar-based QPE was un-

correlated to the gauge observations. Similar to case I,

although the higher-tilt reflectivity is corrected in EXP

II using the VPR derived from radar observations to

the east of RCHL, the underestimation had limited

improvement over EXP I with theMR, RMSE, and CC

of 0.63, 58mm, and 20.30, respectively. The un-

derestimation is mitigated using the new ANN approach

as shown in Fig. 12d, where MR, RMSE, and CC are

improved to 1.06, 43mm, and 0.30, respectively. The

percentages of the enhancement on each score are also

included in Table 2. The better vertical reflectivity struc-

ture captured by TRMM PR and the ANN approach are

the two key factors causing the apparent improvements.

The scatterplots of the comparison between radar QPE

and gauge observations are presented in Fig. 13. There

are a total of 133 pairs of RCHL and TRMM PR vertical

reflectivity columns are used in the ANN training.

The performance of EXP I–IV was also evaluated

using a 24-h precipitation event during Typhoon Tembin

(0000–2400 UTC 23 August 2012) as shown in Figs. 14

and 15.

Comparison results from these four EXPs are also

included in Table 2. There are total of 214 pairs of

RCHL and TRMM PR vertical reflectivity columns are

used in the ANN training.

FIG. 14. Spatial distribution of the radar QPE vs gauge observations (a) without VPR correction, (b) with

VPR correction where the VPRs are derived using mean VPR-RCHL, (c) using mean VPR-TRMM, and (d) using

VPR-TRMM reconstructed from ANN. The 24-h accumulated precipitation from Typhoon Tembin (0000–

2400 UTC 23 Aug 2012) is used in this experiment. The size of the circles represents gauge-observed accumulated

amount, and the color of the circles indicates the bias (QPE/Gauge).
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5. Summary and conclusions

In the ground radar–based quantitative precipitation

estimation, the higher-tilt reflectivity data are generally

used in the rain-rate estimation when the lower-tilt data

are blocked from complex terrain. However, biases

could be introduced into the QPE because of vertical

variations in the reflectivity field. To obtain accurate

radar QPEwhen severe blockages are present, a vertical

profile of reflectivity correction using TRMM PR data

with an artificial neural network (ANN) has been de-

veloped. The ANN is trained using the reflectivity fields

observed by an S-band Doppler weather radar located

on the east coast of Taiwan (RCHL) and by the TRMM

PR. During the training process, the vertical structure of

reflectivity observed by TRMM PR was treated as the

‘‘true’’ VPR, and the training of ANN was aimed at

minimizing the difference between the retrieved radar

reflectivity and the corresponding TRMM PR observa-

tion at a reference level near the ground. The proposed

approach was evaluated using three 24-h typhoon

events. The higher-tilt radar data were corrected using

the trained ANN before being used in the rain-rate es-

timation, and the radar-based QPE was compared with

gauge observations. Compared to the VPR correction

approach based on the VPR-RCHL, the new reflectivity

correction approach can better retrieve reflectivities

using the observations at the higher unblocked tilts. Two

factors are the major reasons for the improvement:

1) the VPR-TRMM can better capture the orographic

FIG. 15. Scatterplots of the radar QPE vs gauge observations for Typhoon Tembin (0000–2400 UTC 23 Aug

2012). The reflectivity fields used in the rain-rate estimation are (a) without VPR correction, (b) with VPR

correction where the VPRs are derived using mean VPR-RCHL, (c) using mean VPR-TRMM, and (d) using

VPR-TRMM reconstructed from ANN. The evaluation results in terms of mean bias, CC, and RMSE are also

included.
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precipitation enhancements and 2) the proposed ANN

can better generate the relation between the higher-tilt

observation and lower-tilt reflectivity.

While the current approach is not ready for real-time

QPE applications, it provides a way of integrating a

spaceborne radar and ground radar data for the purpose

of enhanced QPE. There are some limitations with the

current approach that warrant further study. First, near-

surface observations from TRMM PR may not be reli-

able and residual clutter may impact the correction

results. Second, correlations between radar measure-

ments and surface precipitation decrease with increasing

height of the radar data and the VPR correction range

cannot be far. Third, the relatively small training dataset

potentially limited the usefulness of the current scheme.

The proposed ANN approach might be further en-

hanced had more data been included in the training

process. Fourth, rainfall intensities over complex orog-

raphy depend on the direction of flowwith respect to the

mountain slopes. Because of the limited dataset, the flow

regime was not taken into account in the current work.

With the recent launch of the Global Precipitation

Measurement satellites, the current scheme can be

enhanced with higher spatial– and higher temporal–

resolution spaceborne radar data and potentially further

improve ground radar QPEs for hydrological pre-

dictions in areas with poor radar coverage.
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